DS351 | Statistical Learning for Data Science 1

Spring 2022

[Syllabus] [kaggle report (one-column)] [kaggle report (two-column)]

Time

Instructors

References

Announcements


Lecture Notes

DateTopicNotes/HWLabsReadings
Nov 23 Introduction Lecture 1 Lab 1 ISLR 2.1.5
Nov 30 Linear algebra Lecture 2
Homework 1
Lab 2 LAML 1.2.1-1.2.4, 2.3.1-2.3.2
Dec 14 Principal component analysis (PCA) Lecture 3 Lab 3-1 Lab 3-2 ISLR 10.2.1-10.2.2
LAML 3.3, 3.3.7
Dec 21 Bias-Variance tradeoff Lecture 4 Lab 4 ISLR 2.2.1-2.2.2
Jan 4 Linear regression I Lecture 5 Homework 2
[Carseats data]
Lab 5 ISLR 3.1
Jan 11 Linear regression II Lecture 6
Lab 6 ISLR 3.2
Jan 18 Linear regression III Lecture 7 Lab 7 ISLR 3.3
Jan 25 Midterm week
Feb 1 Time series I Lecture 8 Homework 3 Lab 8-1 Lab 8-2 FPP 2.6-2.8, 8.1
Feb 8 Time series II Lecture 9 Lab 9 FPP 6.1-6.3, 6.7, 6.8
Feb 15 Time series III Lab 10-1 Lab 10-2 FPP 7.1-7.4, 7.6
Feb 22 Time series IV Lecture 10 Lab 11-1 Lab 11-2 FPP 8.1-8.6, 8.8
Mar 1 Logistic regression I Lecture 11 Homework 4 Lab 12 ISLR 4.2, 4.3.1-4.3.3
Mar 8 Linear discriminant analysis & Model evaluation Lecture 12 Lab 13 ISLR 4.3.4-4.3.5,
Mar 15 Final review